The mean free path \( \lambda \) of a molecule is defined as the average distance that a molecule travels between two successive collisions. It is given by the formula:
\[ \lambda = \frac{1}{\sqrt{2} \pi d^2 n}, \]
where:
- \( n \) is the number density of molecules (i.e., the number of molecules per unit volume),
- \( d \) is the diameter of the molecule,
- \( \pi \) is the mathematical constant.
Explanation: The formula for the mean free path is derived from kinetic theory, considering the probability of collisions between molecules in a given volume. The factor \( \sqrt{2} \) accounts for the random distribution of molecular velocities and the likelihood of collisions occurring.
Thus, the average distance covered by a molecule between two successive collisions is represented by:
\[ \lambda = \frac{1}{\sqrt{2} \pi d^2 n}. \]
Therefore, the correct option is (3).
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
The output of the circuit is low (zero) for:

(A) \( X = 0, Y = 0 \)
(B) \( X = 0, Y = 1 \)
(C) \( X = 1, Y = 0 \)
(D) \( X = 1, Y = 1 \)
Choose the correct answer from the options given below:
The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Which of the following circuits has the same output as that of the given circuit?
