The mean free path \( \lambda \) of a molecule is defined as the average distance that a molecule travels between two successive collisions. It is given by the formula:
\[ \lambda = \frac{1}{\sqrt{2} \pi d^2 n}, \]
where:
- \( n \) is the number density of molecules (i.e., the number of molecules per unit volume),
- \( d \) is the diameter of the molecule,
- \( \pi \) is the mathematical constant.
Explanation: The formula for the mean free path is derived from kinetic theory, considering the probability of collisions between molecules in a given volume. The factor \( \sqrt{2} \) accounts for the random distribution of molecular velocities and the likelihood of collisions occurring.
Thus, the average distance covered by a molecule between two successive collisions is represented by:
\[ \lambda = \frac{1}{\sqrt{2} \pi d^2 n}. \]
Therefore, the correct option is (3).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).