The mean free path \( \lambda \) of a molecule is defined as the average distance that a molecule travels between two successive collisions. It is given by the formula:
\[ \lambda = \frac{1}{\sqrt{2} \pi d^2 n}, \]
where:
- \( n \) is the number density of molecules (i.e., the number of molecules per unit volume),
- \( d \) is the diameter of the molecule,
- \( \pi \) is the mathematical constant.
Explanation: The formula for the mean free path is derived from kinetic theory, considering the probability of collisions between molecules in a given volume. The factor \( \sqrt{2} \) accounts for the random distribution of molecular velocities and the likelihood of collisions occurring.
Thus, the average distance covered by a molecule between two successive collisions is represented by:
\[ \lambda = \frac{1}{\sqrt{2} \pi d^2 n}. \]
Therefore, the correct option is (3).

Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
