Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
In an electromagnetic system, the quantity representing the ratio of electric flux and magnetic flux has dimension of $\mathrm{M}^{\mathrm{B}} \mathrm{L}^{\mathrm{O}} \mathrm{T}^{\mathrm{B}} \mathrm{A}^{\mathrm{S}}$, where value of 'Q' and 'R' are
An air filled parallel plate electrostatic actuator is shown in the figure. The area of each capacitor plate is $100 \mu m \times 100 \mu m$. The distance between the plates $d_0 = 1 \mu m$ when both the capacitor charge and spring restoring force are zero as shown in Figure (a). A linear spring of constant $k = 0.01 N/m$ is connected to the movable plate. When charge is supplied to the capacitor using a current source, the top plate moves as shown in Figure (b). The magnitude of minimum charge (Q) required to momentarily close the gap between the plates is ________ $\times 10^{-14}$ C (rounded off to two decimal places).
Note: Assume a full range of motion is possible for the top plate and there is no fringe capacitance. The permittivity of free space is $\epsilon_0 = 8.85 \times 10^{-12}$ F/m and relative permittivity of air ($\epsilon_r$) is 1.
A 60 V DC source with an internal resistance \(R_{int} = 0.5 \, \Omega\) is connected through a switch to a pair of infinitely long rails separated by \(l = 1\) m as shown in the figure. The rails are placed in a constant, uniform magnetic field of flux density \(B = 0.5\) T, directed into the page. A conducting bar placed on these rails is free to move. At the instant of closing the switch, the force induced on the bar is
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: