The total impedance of the circuit is given by:
\[
Z = \sqrt{R^2 + (L\omega)^2}
\]
where:
- \( R = 100 \, \Omega \),
- \( L = 1 \, \text{H} \),
- \( \omega = 2 \pi f = 2 \pi \times 50 = 314 \, \text{rad/s} \).
Substitute the values:
\[
Z = \sqrt{(100)^2 + (314 \times 1)^2} = \sqrt{10000 + 98696} = \sqrt{108696} \approx 330.0 \, \Omega
\]
The maximum current is given by:
\[
I_{\text{max}} = \frac{V_{\text{max}}}{Z} = \frac{10}{330} = 1 \, \text{A}
\]
Thus, the correct answer is (1).