To solve the problem, we'll use Gauss's law, which states that the electric flux \(\Phi\) through a closed surface is equal to the charge enclosed divided by the permittivity of free space \(\epsilon_0\):
\(\Phi = \frac{Q_{\text{enc}}}{\epsilon_0}\)
Given that the linear charge density \(\lambda\) is \(2 \, \text{nC/m}\) or \(2 \times 10^{-9} \, \text{C/m}\), and the wire passes through a diagonally opposite pair of corners of a cube of side \(\sqrt{3} \, \text{cm}\), we can calculate the total charge enclosed by the cube. We can represent the length of the cube's diagonal (which the wire passes through) as \(\sqrt{3} \, \text{cm}\), which also represents the distance passing through the cube:
The length of the wire inside the cube is equal to the side length of the cube: \(\sqrt{3} \, \text{cm}\), which equals \(0.03 \, \text{m}\).
Now, compute the charge \(Q_{\text{enc}}\) enclosed by the cube:
\(Q_{\text{enc}} = \lambda \times l = 2 \times 10^{-9} \, \text{C/m} \times 0.03 \, \text{m} = 6 \times 10^{-11} \, \text{C}\)
Now, calculate the electric flux using Gauss's law:
\(\Phi = \frac{Q_{\text{enc}}}{\epsilon_0} = \frac{6 \times 10^{-11} \, \text{C}}{8.85 \times 10^{-12} \, \text{C}^{2}/\text{Nm}^2}\)
Calculating gives:
\(\Phi = \frac{6 \times 10^{-11}}{8.85 \times 10^{-12}} \approx 6.78 \, \text{Nm}^2/\text{C}\)
Hence, the flux is equivalent to \(2.16\pi \, \text{Nm}^2/\text{C}\), among the provided options.
Therefore, the correct answer is \(2.16\pi\).
An air filled parallel plate electrostatic actuator is shown in the figure. The area of each capacitor plate is $100 \mu m \times 100 \mu m$. The distance between the plates $d_0 = 1 \mu m$ when both the capacitor charge and spring restoring force are zero as shown in Figure (a). A linear spring of constant $k = 0.01 N/m$ is connected to the movable plate. When charge is supplied to the capacitor using a current source, the top plate moves as shown in Figure (b). The magnitude of minimum charge (Q) required to momentarily close the gap between the plates is ________ $\times 10^{-14} C$ (rounded off to two decimal places). Note: Assume a full range of motion is possible for the top plate and there is no fringe capacitance. The permittivity of free space is $\epsilon_0 = 8.85 \times 10^{-12} F/m$ and relative permittivity of air ($\epsilon_r$) is 1.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
