Question:

If $\left| \begin{array}{ccc} -1 & 2 & 4 \\ 1 & x & 1 \\ 0 & 3 & 3x \end{array} \right| = -57$, the product of the possible values of $x$ is:

Show Hint

For solving determinants and equations involving matrices, use cofactor expansion and then simplify the resulting equation. In quadratic equations, use the quadratic formula to find the solutions.
Updated On: Jun 16, 2025
  • $-24$
  • $-16$
  • $16$
  • $24$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the determinant of the following matrix: \[ \left| \begin{array}{ccc} -1 & 2 & 4 \\ 1 & x & 1 \\ 0 & 3 & 3x \end{array} \right| = -57. \] We need to calculate the determinant and solve for $x$. Using cofactor expansion along the first row: \[ \text{det} = (-1) \left| \begin{array}{cc} x & 1 \ 3 &\ 3x \end{array} \right| - 2 \left| \begin{array}{cc} 1 & 1 \\ 0 & 3x \end{array} \right| + 4 \left| \begin{array}{cc} 1 & x \\ 0 & 3 \end{array} \right|. \] Now calculate the 2x2 determinants: \[ \left| \begin{array}{cc} x & 1
3 & 3x \end{array} \right| = x(3x) - (1)(3) = 3x^2 - 3, \] \[ \left| \begin{array}{cc} 1 & 1 \ 0 &\ 3x \end{array} \right| = (1)(3x) - (1)(0) = 3x, \] \[ \left| \begin{array}{cc} 1 & x \ 0 &\ 3 \end{array} \right| = (1)(3) - (x)(0) = 3. \] Substituting these into the determinant formula: \[ \text{det} = (-1)(3x^2 - 3) - 2(3x) + 4(3). \] Simplifying: \[ \text{det} = -(3x^2 - 3) - 6x + 12, \] \[ \text{det} = -3x^2 + 3 - 6x + 12, \] \[ \text{det} = -3x^2 - 6x + 15. \] We are given that this determinant equals $-57$: \[ -3x^2 - 6x + 15 = -57. \] Simplifying the equation: \[ -3x^2 - 6x + 72 = 0, \] \[ x^2 + 2x - 24 = 0. \] Now solve for $x$ using the quadratic formula: \[ x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-24)}}{2(1)} = \frac{-2 \pm \sqrt{4 + 96}}{2} = \frac{-2 \pm \sqrt{100}}{2} = \frac{-2 \pm 10}{2}. \] Thus, the two possible values of $x$ are: \[ x = \frac{-2 + 10}{2} = 4 \quad \text{or} \quad x = \frac{-2 - 10}{2} = -6. \] The product of the possible values of $x$ is: \[ 4 \times (-6) = -24. \] Thus, the product of the possible values of $x$ is $-24$.
Was this answer helpful?
0
0