We are given the determinant of the following matrix:
\[
\left| \begin{array}{ccc} -1 & 2 & 4 \\ 1 & x & 1 \\ 0 & 3 & 3x \end{array} \right| = -57.
\]
We need to calculate the determinant and solve for $x$. Using cofactor expansion along the first row:
\[
\text{det} = (-1) \left| \begin{array}{cc} x & 1 \ 3 &\ 3x \end{array} \right| - 2 \left| \begin{array}{cc} 1 & 1 \\ 0 & 3x \end{array} \right| + 4 \left| \begin{array}{cc} 1 & x \\ 0 & 3 \end{array} \right|.
\]
Now calculate the 2x2 determinants:
\[
\left| \begin{array}{cc} x & 1
3 & 3x \end{array} \right| = x(3x) - (1)(3) = 3x^2 - 3,
\]
\[
\left| \begin{array}{cc} 1 & 1 \ 0 &\ 3x \end{array} \right| = (1)(3x) - (1)(0) = 3x,
\]
\[
\left| \begin{array}{cc} 1 & x \ 0 &\ 3 \end{array} \right| = (1)(3) - (x)(0) = 3.
\]
Substituting these into the determinant formula:
\[
\text{det} = (-1)(3x^2 - 3) - 2(3x) + 4(3).
\]
Simplifying:
\[
\text{det} = -(3x^2 - 3) - 6x + 12,
\]
\[
\text{det} = -3x^2 + 3 - 6x + 12,
\]
\[
\text{det} = -3x^2 - 6x + 15.
\]
We are given that this determinant equals $-57$:
\[
-3x^2 - 6x + 15 = -57.
\]
Simplifying the equation:
\[
-3x^2 - 6x + 72 = 0,
\]
\[
x^2 + 2x - 24 = 0.
\]
Now solve for $x$ using the quadratic formula:
\[
x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-24)}}{2(1)} = \frac{-2 \pm \sqrt{4 + 96}}{2} = \frac{-2 \pm \sqrt{100}}{2} = \frac{-2 \pm 10}{2}.
\]
Thus, the two possible values of $x$ are:
\[
x = \frac{-2 + 10}{2} = 4 \quad \text{or} \quad x = \frac{-2 - 10}{2} = -6.
\]
The product of the possible values of $x$ is:
\[
4 \times (-6) = -24.
\]
Thus, the product of the possible values of $x$ is $-24$.