We are given a triangle \( \Delta PQR \) with points \( L, M, N \) as the midpoints of the sides:
\[
\overline{L} \text{ (Midpoint of } \overline{PQ}), \quad \overline{M} \text{ (Midpoint of } \overline{QR}), \quad \overline{N} \text{ (Midpoint of } \overline{RP})
\]
We need to evaluate the expression:
\[
\overline{QM} + \overline{LN} + \overline{ML} + \overline{RN} - \overline{MN} - \overline{QL}
\]
Step 1: Identify Midpoint Properties
By the midpoint theorem:
\[
\overline{LN} = \frac{1}{2} \overline{PR}, \quad
\overline{ML} = \frac{1}{2} \overline{PQ}, \quad
\overline{MN} = \frac{1}{2} \overline{QR}
\]
Also,
\[
\overline{QM} = \frac{1}{2} \overline{QR}, \quad
\overline{RN} = \frac{1}{2} \overline{PR}, \quad
\overline{QL} = \frac{1}{2} \overline{PQ}
\]
Step 2: Add and Subtract Terms
Now combine the given expression:
\[
\overline{QM} + \overline{LN} + \overline{ML} + \overline{RN} - \overline{MN} - \overline{QL}
\]
Substituting the midpoint values:
\[
= \frac{1}{2} \overline{QR} + \frac{1}{2} \overline{PR} + \frac{1}{2} \overline{PQ}
+ \frac{1}{2} \overline{PR} - \frac{1}{2} \overline{QR} - \frac{1}{2} \overline{PQ}
\]
Step 3: Simplifying
By combining like terms:
- \( \frac{1}{2} \overline{QR} - \frac{1}{2} \overline{QR} = 0 \)
- \( \frac{1}{2} \overline{PQ} - \frac{1}{2} \overline{PQ} = 0 \)
- Remaining terms:
\[
= \frac{1}{2} \overline{PR} + \frac{1}{2} \overline{PR} = \overline{PR}
\]
Now recall the identity in triangle geometry:
\[
\overline{PQ} + \overline{QR} - \overline{PR}
\]
Step 4: Final Answer
\[
\boxed{\overline{PQ} + \overline{QR} - \overline{PR}}
\]
Final Answer: (C) \( \overline{PQ} + \overline{QR} - \overline{PR} \)