If \[ \int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} \, dx = \sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log_e \left( \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| \right) + C, \] where \( C \) is the constant of integration, then \( \alpha + 2\beta \) is equal to ……..
We are tasked with finding the values of \( \alpha \) and \( \beta \) in the given integral. To solve this, we perform the integration of the function \( \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} \) using substitution and matching the result with the given expression.
First, simplify the integrand by performing a substitution for \( u = x^2 + x + 1 \). This leads to a simpler form for the integral. We integrate and match the terms with the given solution. After performing the integration and comparing coefficients, we find that \( \alpha = 1 \) and \( \beta = -1 \). Thus, \[ \alpha + 2\beta = 1 + 2(-1) = 0. \]
Final Answer: \( \alpha + 2\beta = 0 \).

If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
The integral $ \int_{0}^{\pi} \frac{8x dx}{4 \cos^2 x + \sin^2 x} $ is equal to
Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 