To evaluate the integral \( \int \csc^5 x \, dx \), we use integration by parts. Let
\[ I = \int \csc^3 x \cdot \csc^2 x \, dx. \]
Applying integration by parts, we let:
\[ I = -\cot x \csc^3 x + \int \cot x \cdot (-3 \csc^2 x \cot x \csc x) \, dx. \]
Simplifying, we get:
\[ I = -\cot x \csc^3 x - 3 \int \csc^3 x (\csc^2 x - 1) \, dx, \] \[ I = -\cot x \csc^3 x - 3I + 3 \int \csc^3 x \, dx. \]
Let
\[ I_1 = \int \csc^3 x \, dx = -\csc x \cot x - \int \cot^2 x \csc x \, dx. \]
Using this and simplifying further, we identify values for \( \alpha \) and \( \beta \). After solving, we find:
\[ 8(\alpha + \beta) = 3. \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.