Step 1: Understanding the Concept
This is a definite integral of a trigonometric function. The integrand is of a standard form that can be solved by dividing the numerator and denominator by $\cos^2 x$ and then using the substitution $u = \tan x$.
Step 2: Key Formula or Approach
1. Divide the numerator and denominator of the integrand by $\cos^2 x$. The numerator becomes $\sec^2 x$.
2. The integral transforms into the form $\int \frac{\sec^2 x}{A\tan^2 x + B\tan x + C} dx$.
3. Use the substitution $u = \tan x$, so $du = \sec^2 x dx$.
4. Change the limits of integration according to the substitution.
5. Evaluate the resulting integral of a rational function, which will likely be of the form $\int \frac{du}{au^2+bu+c}$, by completing the square.
Step 3: Detailed Explanation
Let $I = \int_0^{\pi/2} \frac{1}{5\cos^2 x + 16\sin^2 x + 8\sin x \cos x} dx$.
1. Transform the integrand:
Divide numerator and denominator by $\cos^2 x$:
\[ I = \int_0^{\pi/2} \frac{\sec^2 x}{5 + 16\tan^2 x + 8\tan x} dx \]
2. Substitution:
Let $u = \tan x$. Then $du = \sec^2 x dx$.
Change the limits:
When $x=0$, $u = \tan(0) = 0$.
When $x \to \pi/2$, $u = \tan(x) \to \infty$.
The integral becomes:
\[ I = \int_0^\infty \frac{1}{16u^2 + 8u + 5} du \]
3. Complete the square:
The denominator is $16u^2 + 8u + 5$.
\[ 16u^2 + 8u + 5 = 16\left(u^2 + \frac{1}{2}u\right) + 5 = 16\left(u^2 + \frac{1}{2}u + \frac{1}{16} - \frac{1}{16}\right) + 5 \]
\[ = 16\left(u+\frac{1}{4}\right)^2 - 1 + 5 = 16\left(u+\frac{1}{4}\right)^2 + 4 \]
4. Evaluate the integral:
\[ I = \int_0^\infty \frac{1}{16(u+1/4)^2 + 4} du \]
Let $v = u+1/4$, so $dv=du$. The limits change from $[0, \infty)$ for $u$ to $[1/4, \infty)$ for $v$.
\[ I = \int_{1/4}^\infty \frac{1}{16v^2 + 4} dv = \frac{1}{4} \int_{1/4}^\infty \frac{1}{4v^2+1} dv = \frac{1}{4} \int_{1/4}^\infty \frac{1}{(2v)^2+1} dv \]
This is a standard arctangent integral form.
\[ I = \frac{1}{4} \left[ \frac{1}{2} \arctan(2v) \right]_{1/4}^\infty = \frac{1}{8} [\arctan(2v)]_{1/4}^\infty \]
\[ I = \frac{1}{8} \left( \lim_{v\to\infty} \arctan(2v) - \arctan\left(2 \cdot \frac{1}{4}\right) \right) \]
\[ I = \frac{1}{8} \left( \frac{\pi}{2} - \arctan\left(\frac{1}{2}\right) \right) \]
Using the identity $\arctan(x) + \text{arccot}(x) = \pi/2$, we get $\pi/2 - \arctan(1/2) = \text{arccot}(1/2) = \arctan(2)$.
So, the final result is:
\[ I = \frac{1}{8}\arctan(2) \]
This result does not match any of the options provided.
Step 4: Final Answer
The correct value of the integral is $\frac{1}{8}\arctan(2)$. As this is not among the options, the question is likely flawed.