\( \frac{e - 1}{e} \)
Step 1: Identify the Integral Form
Given: \[ I = \int (1 + x - x^x) e^{x + x^x} dx. \] Observing the structure, we let: \[ u = x + x^x. \] Differentiating: \[ du = (1 + x \ln x) dx. \] Thus, the integral transforms into a standard exponential integral form: \[ I = \int e^u du. \]
Step 2: Solve the Integral
The standard result is: \[ \int e^u du = e^u + C. \] Thus, \[ f(x) = e^{x + x^x}. \]
Step 3: Compute \( f(1) - f(-1) \)
\[ f(1) = e^{1 + 1^1} = e^2. \] \[ f(-1) = e^{-1 + (-1)^{-1}} = e^{-1 + 1} = e^0 = 1. \] \[ f(1) - f(-1) = e^2 - 1. \]
Step 4: Conclusion
Thus, the correct answer is: \[ \mathbf{e^2 + 1}. \]
Let $ I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx $
and $ I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx \; \text{then} \frac{I_2}{I_1} \text{ equals to:} $
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon