Question:

If (1+xxx)ex+xxdx=f(x)+c, \int (1 + x - x^x) e^{x + x^x} dx = f(x) + c, then f(1)f(1)= f(1) - f(-1) =

Show Hint

For integrals involving xx x^x , try substitution u=x+xx u = x + x^x and differentiate accordingly.
Updated On: Mar 15, 2025
  • e21e2 \frac{e^2 - 1}{e^2}
  • e2+1 e^2 + 1
  • e+1e \frac{e + 1}{e}
  • e1e \frac{e - 1}{e}  
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


Step 1: Identify the Integral Form 
Given: I=(1+xxx)ex+xxdx. I = \int (1 + x - x^x) e^{x + x^x} dx. Observing the structure, we let: u=x+xx. u = x + x^x. Differentiating: du=(1+xlnx)dx. du = (1 + x \ln x) dx. Thus, the integral transforms into a standard exponential integral form: I=eudu. I = \int e^u du.  

Step 2: Solve the Integral 
The standard result is: eudu=eu+C. \int e^u du = e^u + C. Thus, f(x)=ex+xx. f(x) = e^{x + x^x}.  

Step 3: Compute f(1)f(1) f(1) - f(-1)  
f(1)=e1+11=e2. f(1) = e^{1 + 1^1} = e^2. f(1)=e1+(1)1=e1+1=e0=1. f(-1) = e^{-1 + (-1)^{-1}} = e^{-1 + 1} = e^0 = 1. f(1)f(1)=e21. f(1) - f(-1) = e^2 - 1.  

Step 4: Conclusion 
Thus, the correct answer is: e2+1. \mathbf{e^2 + 1}.  

Was this answer helpful?
0
0

Top Questions on Integration

View More Questions