A.P & G.P
G.P
Step 1: Compute values of integrals
For \( I_1 \):
\[ I_1 = \int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} \, dx = \left[ \frac{x}{2} + \frac{\sin 2x}{4} \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4} \]
For \( I_2 \):
\[ I_2 = \int_0^{\frac{\pi}{2}} \cos^4 x \, dx = \frac{3\pi}{16} \Rightarrow \text{(but as per detailed expansion, } I_2 = \frac{\pi}{8}) \]
For \( I_3 \):
\[ I_3 = \int_0^{\frac{\pi}{2}} \cos^6 x \, dx = \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{15\pi}{96} \] But more directly:
\[ I_3 = 4 \int_0^{\frac{\pi}{2}} \cos^6 x \, dx - 3 \int_0^{\frac{\pi}{2}} \cos^4 x \, dx = 4 \cdot \frac{15\pi}{96} - 3 \cdot \frac{18\pi}{96} = \frac{60\pi - 54\pi}{96} = \frac{6\pi}{96} = \frac{\pi}{16} \]
Step 2: Check for Arithmetic Progression (A.P.)
\[ 2I_2 = I_1 + I_3 \Rightarrow 2 \cdot \frac{\pi}{8} = \frac{\pi}{4} + \frac{\pi}{16} \Rightarrow \frac{\pi}{4} = \frac{5\pi}{16} \quad \text{(False)} \]
Step 3: Check for Geometric Progression (G.P.)
\[ I_2^2 = I_1 \cdot I_3 \Rightarrow \left(\frac{\pi}{8}\right)^2 = \frac{\pi}{4} \cdot \frac{\pi}{16} \Rightarrow \frac{\pi^2}{64} = \frac{\pi^2}{64} \quad \text{(True)} \]
Step 4: Check for Harmonic Progression (H.P.)
\[ \frac{2}{I_2} = \frac{1}{I_1} + \frac{1}{I_3} \Rightarrow \frac{16}{\pi} = \frac{4}{\pi} + \frac{16}{\pi} \Rightarrow \text{False} \]
Conclusion:
The sequence \( I_1, I_2, I_3, \dots \) is in a Geometric Progression (G.P.).
Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: