Step 1: Define average torque and angular momentum.
The average torque ($\vec{\tau}_{avg}$) acting on a body is equal to the total change in angular momentum ($\Delta \vec{L}$) divided by the total time taken ($\Delta t$).
\[ \vec{\tau}_{avg} = \frac{\Delta \vec{L}}{\Delta t} = \frac{\vec{L}_f - \vec{L}_i}{T} \]
Here, $T$ is the total time of flight. Angular momentum ($\vec{L}$) is defined as $\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$, where $\vec{r}$ is the position vector from the origin, $m$ is the mass, and $\vec{v}$ is the velocity. We choose the origin as the point of projection.
Step 2: Calculate initial angular momentum ($\vec{L}_i$).
At the point of projection (initial time $t=0$), the position vector $\vec{r}_i = \vec{0}$.
Therefore, the initial angular momentum $\vec{L}_i = \vec{r}_i \times m\vec{u} = \vec{0} \times m\vec{u} = \vec{0}$.
Step 3: Calculate the time of flight ($T$).
For a projectile launched with initial velocity $u$ at an angle $\theta$ with the horizontal, the time of flight is given by:
\[ T = \frac{2u \sin \theta}{g} \]
Step 4: Calculate final position and velocity at time of flight ($T$).
At time $T$, the projectile returns to the horizontal level (ground, $y=0$).
The horizontal distance traveled (range) is:
\[ x_f = (u \cos \theta) T = (u \cos \theta) \left(\frac{2u \sin \theta}{g}\right) = \frac{2u^2 \sin \theta \cos \theta}{g} = \frac{u^2 \sin (2\theta)}{g} \]
So, the final position vector is $\vec{r}_f = \frac{u^2 \sin (2\theta)}{g} \hat{i}$. (assuming projection is from origin, and horizontal is x-axis)
The final velocity components are:
$v_{fx} = u \cos \theta$
$v_{fy} = u \sin \theta - gT = u \sin \theta - g\left(\frac{2u \sin \theta}{g}\right) = u \sin \theta - 2u \sin \theta = -u \sin \theta$
So, the final velocity vector is $\vec{v}_f = (u \cos \theta)\hat{i} - (u \sin \theta)\hat{j}$.
Step 5: Calculate final angular momentum ($\vec{L}_f$).
$\vec{L}_f = \vec{r}_f \times m\vec{v}_f$
$\vec{L}_f = \left( \frac{u^2 \sin (2\theta)}{g} \hat{i} \right) \times m \left( (u \cos \theta)\hat{i} - (u \sin \theta)\hat{j} \right)$
Using the cross product properties ($\hat{i} \times \hat{i} = \vec{0}$ and $\hat{i} \times \hat{j} = \hat{k}$):
$\vec{L}_f = m \frac{u^2 \sin (2\theta)}{g} (u \cos \theta)(\hat{i} \times \hat{i}) - m \frac{u^2 \sin (2\theta)}{g} (u \sin \theta)(\hat{i} \times \hat{j})$
$\vec{L}_f = \vec{0} - m \frac{u^3 \sin (2\theta) \sin \theta}{g} \hat{k}$
$\vec{L}_f = - \frac{m u^3 \sin (2\theta) \sin \theta}{g} \hat{k}$
Step 6: Calculate the average torque.
\[ \vec{\tau}_{avg} = \frac{\vec{L}_f - \vec{L}_i}{T} = \frac{- \frac{m u^3 \sin (2\theta) \sin \theta}{g} \hat{k} - \vec{0}}{\frac{2u \sin \theta}{g}} \]
\[ \vec{\tau}_{avg} = \frac{- \frac{m u^3 \sin (2\theta) \sin \theta}{g}}{\frac{2u \sin \theta}{g}} \hat{k} \]
Cancel common terms ($\frac{u \sin \theta}{g}$):
\[ \vec{\tau}_{avg} = - \frac{m u^2 \sin (2\theta)}{2} \hat{k} \]
The magnitude of the average torque is $\frac{m u^2 \sin (2\theta)}{2}$.
The final answer is $\boxed{\frac{mu^2 \sin 2\theta}{2}}$.