The range of a projectile is given by: \[ R = \frac{u^2 \sin 2\theta}{g} \] Given \( u = 60 \, \text{m/s} \), \( R = 180\sqrt{3} \, \text{m} \), \( g = 10 \, \text{m/s}^2 \): \[ 180\sqrt{3} = \frac{60^2 \sin 2\theta}{10} \] \[ 180\sqrt{3} = \frac{3600 \sin 2\theta}{10} = 360 \sin 2\theta \] \[ \sin 2\theta = \frac{180\sqrt{3}}{360} = \frac{\sqrt{3}}{2} \] \[ 2\theta = 60^\circ \quad \text{or} \quad 2\theta = 180^\circ - 60^\circ = 120^\circ \] \[ \theta = 30^\circ \quad \text{or} \quad \theta = 60^\circ \] Option (1) is correct. Options (2), (3), and (4) do not satisfy \( \sin 2\theta = \frac{\sqrt{3}}{2} \).