If f(x) = ∫x0 t(sin x-sin t)dt then
\(f\left(x\right) = \int^{^x}_{_0}t\left(sin\,x - sin\,t\right)dt\)
\(f\left(x\right) = sinx \int^{^x}_{_0}t\,dt - \int^{^x}_{_0} t \,sin\,tdt\)
\(f'\left(x\right) = \left(sinx\right) x +cosx \int^{^x}_{_0} t \,dt-x\,sinx\)
\(f'\left(x\right) = cosx \int^{^x}_{_0} tdt\) = \(x\cos x\)
\(f''\left(x\right) = \left(cosx\right) x - \left(sinx\right) \int^{^x}_{_0} tdt\)
\(f'''\left(x\right) = x\left(-sinx\right) + cosx-\left(sinx\right)x-\left(cosx\right) \int^{^x}_{_0} tdt\)
\(f'''\left(x\right)+f'\left(x\right) = cosx-2x\,sinx\)
Which of the following statement is true with respect to H\(_2\)O, NH\(_3\) and CH\(_4\)?
(A) The central atoms of all the molecules are sp\(^3\) hybridized.
(B) The H–O–H, H–N–H and H–C–H angles in the above molecules are 104.5°, 107.5° and 109.5° respectively.
(C) The increasing order of dipole moment is CH\(_4\)<NH\(_3\)<H\(_2\)O.
(D) Both H\(_2\)O and NH\(_3\) are Lewis acids and CH\(_4\) is a Lewis base.
(E) A solution of NH\(_3\) in H\(_2\)O is basic. In this solution NH\(_3\) and H\(_2\)O act as Lowry-Bronsted acid and base respectively.
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.