If f(x) = ∫x0 t(sin x-sin t)dt then
\(f\left(x\right) = \int^{^x}_{_0}t\left(sin\,x - sin\,t\right)dt\)
\(f\left(x\right) = sinx \int^{^x}_{_0}t\,dt - \int^{^x}_{_0} t \,sin\,tdt\)
\(f'\left(x\right) = \left(sinx\right) x +cosx \int^{^x}_{_0} t \,dt-x\,sinx\)
\(f'\left(x\right) = cosx \int^{^x}_{_0} tdt\) = \(x\cos x\)
\(f''\left(x\right) = \left(cosx\right) x - \left(sinx\right) \int^{^x}_{_0} tdt\)
\(f'''\left(x\right) = x\left(-sinx\right) + cosx-\left(sinx\right)x-\left(cosx\right) \int^{^x}_{_0} tdt\)
\(f'''\left(x\right)+f'\left(x\right) = cosx-2x\,sinx\)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.
