Given:
- \( \vec{a} \parallel \vec{b} \), meaning that vectors \( \vec{a} \) and \( \vec{b} \) are in the same direction.
- \( \vec{a} \cdot \vec{b} = \frac{49}{2} \), which is the dot product of vectors \( \vec{a} \) and \( \vec{b} \).
- \( |\vec{a}| = 7 \), which is the magnitude of vector \( \vec{a} \).
1. Step 1: Use the formula for the dot product of two parallel vectors:
The dot product of two vectors \( \vec{a} \) and \( \vec{b} \) can be written as:
\[
\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta)
\]
Since \( \vec{a} \parallel \vec{b} \), the angle \( \theta = 0^\circ \), and \( \cos(0^\circ) = 1 \). Thus, the dot product becomes:
\[
\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|
\]
2. Step 2: Substitute the known values into the equation:
We are given \( \vec{a} \cdot \vec{b} = \frac{49}{2} \) and \( |\vec{a}| = 7 \), so we substitute these into the equation:
\[
\frac{49}{2} = 7 \cdot |\vec{b}|
\]
3. Step 3: Solve for \( |\vec{b}| \):
To find \( |\vec{b}| \), divide both sides by 7:
\[
|\vec{b}| = \frac{49}{2 \cdot 7} = 14
\]
Thus, the magnitude of \( \vec{b} \) is \( 14 \).