To solve the problem, we need to find the value of the sum \( \sum_{k=1}^{81} f\left(\frac{k}{82}\right) \) where \( f(x) = \frac{2^x}{2^x + \sqrt{2}} \).
1. Analyze \( f(x) + f(1-x) \):
We compute \( f(1-x) \):
\( f(1-x) = \frac{2^{1-x}}{2^{1-x} + \sqrt{2}} = \frac{2/2^x}{2/2^x + \sqrt{2}} = \frac{2}{2 + \sqrt{2} \cdot 2^x} = \frac{\sqrt{2}}{\sqrt{2} + 2^x} \)
Then we add \( f(x) \) and \( f(1-x) \):
\( f(x) + f(1-x) = \frac{2^x}{2^x + \sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2} + 2^x} = \frac{2^x + \sqrt{2}}{2^x + \sqrt{2}} = 1 \)
2. Pair terms in the sum:
We pair the terms in the sum such that their arguments add up to 1. In other words, we pair \( f\left(\frac{k}{82}\right) \) with \( f\left(\frac{82-k}{82}\right) \):
\( f\left(\frac{k}{82}\right) + f\left(\frac{82-k}{82}\right) = f\left(\frac{k}{82}\right) + f\left(1 - \frac{k}{82}\right) = 1 \)
3. Rewrite the sum:
The original sum is \( \sum_{k=1}^{81} f\left(\frac{k}{82}\right) \). We can rewrite the sum as:
\( S = \sum_{k=1}^{40} \left[ f\left(\frac{k}{82}\right) + f\left(\frac{82-k}{82}\right) \right] + f\left(\frac{41}{82}\right) \)
Since \( \frac{82-k}{82} = 1 - \frac{k}{82} \), each paired term in the sum equals 1.
4. Evaluate the sum:
The sum becomes:
\( S = \sum_{k=1}^{40} 1 + f\left(\frac{41}{82}\right) = 40 + f\left(\frac{1}{2}\right) \)
Now, we evaluate \( f\left(\frac{1}{2}\right) \):
\( f\left(\frac{1}{2}\right) = \frac{2^{1/2}}{2^{1/2} + \sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2} + \sqrt{2}} = \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2} \)
So, \( S = 40 + \frac{1}{2} = \frac{81}{2} = 40.5 \)
Final Answer:
The value of the sum is \( \frac{81}{2} \).
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to