We need to find \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} \).
Given \( f(0) = 0 \), so the limit becomes \( \lim_{x \to 0} \frac{f(x)}{x} \).
For \( x \neq 0 \), \( f(x) = x \left( 1 + \frac{1}{2} \sin(\log x^2) \right) \).
So, \( \frac{f(x)}{x} = 1 + \frac{1}{2} \sin(\log x^2) \).
We need to evaluate \( \lim_{x \to 0} \left( 1 + \frac{1}{2} \sin(\log x^2) \right) \).
Let \( t = \log x^2 = 2 \log |x| \).
As \( x \to 0 \), \( |x| \to 0^+ \), so \( \log |x| \to -\infty \), and \( t \to -\infty \).
The limit becomes \( \lim_{t \to -\infty} \left( 1 + \frac{1}{2} \sin(t) \right) \).
The function \( \sin(t) \) oscillates between -1 and 1 as \( t \to -\infty \).
Therefore, \( 1 + \frac{1}{2} \sin(t) \) oscillates between \( 1 + \frac{1}{2}(-1) = \frac{1}{2} \) and \( 1 + \frac{1}{2}(1) = \frac{3}{2} \).
Since the limit oscillates between two different values, the limit does not exist.