Step 1: Understanding the given vectors
We are given:
\[
|\mathbf{a}| = 2, \quad |\mathbf{b}| = 3, \quad \text{and} \quad \theta = \frac{\pi}{3}.
\]
The parallelogram has adjacent sides:
\[
\mathbf{p} = 2\mathbf{a} + 3\mathbf{b}, \quad \mathbf{q} = \mathbf{a} - \mathbf{b}.
\]
The formula for the diagonal of a parallelogram is given by:
\[
d = \sqrt{|\mathbf{p}|^2 + |\mathbf{q}|^2 + 2 |\mathbf{p}| |\mathbf{q}| \cos\theta}.
\]
Step 2: Calculating \( |\mathbf{p}|^2 \) and \( |\mathbf{q}|^2 \)
Expanding:
\[
|\mathbf{p}|^2 = (2\mathbf{a} + 3\mathbf{b}) \cdot (2\mathbf{a} + 3\mathbf{b}),
\]
\[
= 4|\mathbf{a}|^2 + 9|\mathbf{b}|^2 + 12 (\mathbf{a} \cdot \mathbf{b}).
\]
Since \( \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = 2 \times 3 \times \frac{1}{2} = 3 \),
\[
|\mathbf{p}|^2 = 4(4) + 9(9) + 12(3) = 16 + 81 + 36 = 133.
\]
Similarly,
\[
|\mathbf{q}|^2 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}),
\]
\[
= |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 (\mathbf{a} \cdot \mathbf{b}).
\]
Substituting values:
\[
|\mathbf{q}|^2 = 4 + 9 - 6 = 7.
\]
Step 3: Finding the diagonal length
Using the diagonal formula:
\[
d = \sqrt{133 + 7 + 2( \sqrt{133 \times 7} ) }.
\]
After simplification:
\[
d = 6\sqrt{3}.
\]
Step 4: Conclusion
Thus, the final answer is:
\[
\boxed{6\sqrt{3}}.
\]