Let $ \vec{w} = \hat{i} + \hat{j} - 2\hat{k} $, and $ \vec{u} $ and $ \vec{v} $ be two vectors, such that $ \vec{u} \times \vec{v} = \vec{w} $ and $ \vec{v} \times \vec{w} = \vec{u} $. Let $ \alpha, \beta, \gamma $, and $ t $ be real numbers such that: $$ \vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, $$ and the system of equations is: $$ -t\alpha + \beta + \gamma = 0 \quad \cdots (1) $$ $$ \alpha - t\beta + \gamma = 0 \quad \cdots (2) $$ $$ \alpha + \beta - t\gamma = 0 \quad \cdots (3) $$ Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
List-II
Let \( \vec{p} \) and \( \vec{q} \) be two unit vectors and \( \alpha \) be the angle between them. Then \( (\vec{p} + \vec{q}) \) will be a unit vector for what value of \( \alpha \)?
If the inverse point of the point \( (-1, 1) \) with respect to the circle \( x^2 + y^2 - 2x + 2y - 1 = 0 \) is \( (p, q) \), then \( p^2 + q^2 = \)
Three blocks of masses 2 m, 4 m and 6 m are placed as shown in figure. If \( \sin 37^\circ = \frac{3}{5} \), \( \sin 53^\circ = \frac{4}{5} \), the acceleration of the system is:
The density of \(\beta\)-Fe is 7.6 g/cm\(^3\). It crystallizes in a cubic lattice with \( a = 290 \) pm.
What is the value of \( Z \)? (\( Fe = 56 \) g/mol, \( N_A = 6.022 \times 10^{23} \) mol\(^{-1}\))