If \(f(x) = \begin{cases} \frac{1 - \cos(Kx)}{x \sin x}, & \text{if } x \neq 0 \\ \frac{1}{2}, & \text{if } x = 0 \end{cases}\) is continuous at x = 0, then we need to find the value of K.
For f(x) to be continuous at x = 0, we must have \(\lim_{x \to 0} f(x) = f(0)\).
So, \(\lim_{x \to 0} \frac{1 - \cos(Kx)}{x \sin x} = \frac{1}{2}\).
We can use the trigonometric identity \(1 - \cos \theta = 2 \sin^2(\frac{\theta}{2})\):
\(\lim_{x \to 0} \frac{2 \sin^2(\frac{Kx}{2})}{x \sin x} = \frac{1}{2}\)
\(\lim_{x \to 0} \frac{2 \sin^2(\frac{Kx}{2})}{x^2} \cdot \frac{x}{\sin x} = \frac{1}{2}\)
We know that \(\lim_{x \to 0} \frac{\sin x}{x} = 1\), so \(\lim_{x \to 0} \frac{x}{\sin x} = 1\).
\(\lim_{x \to 0} \frac{2 \sin^2(\frac{Kx}{2})}{x^2} \cdot 1 = \frac{1}{2}\)
\(2 \lim_{x \to 0} \frac{\sin^2(\frac{Kx}{2})}{x^2} = \frac{1}{2}\)
\(\lim_{x \to 0} \frac{\sin^2(\frac{Kx}{2})}{x^2} = \frac{1}{4}\)
\(\lim_{x \to 0} (\frac{\sin(\frac{Kx}{2})}{x})^2 = \frac{1}{4}\)
We can rewrite this as:
\(\lim_{x \to 0} (\frac{\sin(\frac{Kx}{2})}{\frac{Kx}{2}} \cdot \frac{K}{2})^2 = \frac{1}{4}\)
Since \(\lim_{x \to 0} \frac{\sin(\frac{Kx}{2})}{\frac{Kx}{2}} = 1\), we have:
\((1 \cdot \frac{K}{2})^2 = \frac{1}{4}\)
\(\frac{K^2}{4} = \frac{1}{4}\)
\(K^2 = 1\)
\(K = \pm 1\)
Therefore, the correct option is (D) \(\pm 1\).
Prove that the function \( f(x) = |x| \) is continuous at \( x = 0 \) but not differentiable.
\[ f(x) = \begin{cases} x^2 + 2, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases} \]
is not continuous at \( x = 0 \).Is the function \( f(x) \) defined by
\[ f(x) = \begin{cases} x + 5, & \text{if } x \leq 1 \\ x - 5, & \text{if } x > 1 \end{cases} \]
continuous at \( x = 1 \)?