We are given the function:
\[
f(\theta) = \frac{\tan(\tan(\theta)) - \tan(\sin(\theta))}{\tan(\theta) - \sin(\theta)}.
\]
The function is continuous at \( \theta = 0 \), meaning that \( \lim_{\theta \to 0} f(\theta) = f(0) \).
To find the value of \( f(\theta) \) at \( \theta = 0 \), we need to evaluate the limit of the given expression as \( \theta \) approaches 0. We can start by checking the behavior of the numerator and denominator as \( \theta \to 0 \).
### Step 1: Use Taylor series expansion
For small values of \( \theta \), we can expand the functions using their Taylor series around \( \theta = 0 \):
- \( \tan(\theta) = \theta + \frac{\theta^3}{3} + O(\theta^5) \)
- \( \sin(\theta) = \theta - \frac{\theta^3}{6} + O(\theta^5) \)
### Step 2: Approximate the numerator and denominator
Using the above expansions:
- \( \tan(\tan(\theta)) = \tan(\theta + \frac{\theta^3}{3}) \approx \theta + \frac{\theta^3}{3} \)
- \( \tan(\sin(\theta)) = \tan(\theta - \frac{\theta^3}{6}) \approx \theta - \frac{\theta^3}{6} \)
Thus, the numerator becomes:
\[
\tan(\tan(\theta)) - \tan(\sin(\theta)) \approx \left(\theta + \frac{\theta^3}{3}\right) - \left(\theta - \frac{\theta^3}{6}\right) = \frac{\theta^3}{2}.
\]
The denominator becomes:
\[
\tan(\theta) - \sin(\theta) \approx \left(\theta + \frac{\theta^3}{3}\right) - \left(\theta - \frac{\theta^3}{6}\right) = \frac{\theta^3}{2}.
\]
### Step 3: Simplify the expression
Now, we substitute these approximations into the original expression for \( f(\theta) \):
\[
f(\theta) \approx \frac{\frac{\theta^3}{2}}{\frac{\theta^3}{2}} = 1.
\]
Thus, the value of \( f(\theta) \) at \( \theta = 0 \) is 1.