If \([Cu(H_2O)_4]^{2+}\) absorbs a light of wavelength 600 nm for d-d transition, then the value of octahedral crystal field splitting energy for [\(Cu(H_2O)_6]^{2+}\) will be _______ \(×10^{–21} J\). [Nearest integer]
(Given : h = \(6.63 × 10^{–34} Js\) and \(c = 3.08×10^8 ms^{–1}\))
\([Cu(H_2O)_4]^{2+}\) is tetrahedral
\([Cu(H_2O)_6]^{2+}\) is octahedral
Because,
\(△_t = \frac 49 \times△_0\)
\(△_t = \frac {6.63 \times 10^{-34} \times 3.08 \times 10^8}{600 \times 10^{-9}}\)
\(△_0 = \frac 94 \times \frac {6.63 \times 10^{-34} \times 3.08 \times 10^8}{600 \times 10^{-9}}\)
\(≃ 765 \times 10^{-21}\ J\)
So, the answer is \(765\).
Among, Sc, Mn, Co and Cu, identify the element with highest enthalpy of atomisation. The spin only magnetic moment value of that element in its +2 oxidation state is _______BM (in nearest integer).
Given below are two statements :
Statement I : CrO\( _3 \) is a stronger oxidizing agent than MoO\( _3 \)
Statement II : Cr(VI) is more stable than Mo(VI) In the light of the above statements, choose the correct answer from the options given below
Match List-I with List-II.
Choose the correct answer from the options given below :