We are given that \(\csc \theta + \cot \theta = k\). Using the identity \(\csc^2 \theta - \cot^2 \theta = 1\), we can square both sides of the given equation:
\[
(\csc \theta + \cot \theta)^2 = k^2
\]
Expanding:
\[
\csc^2 \theta + 2 \csc \theta \cot \theta + \cot^2 \theta = k^2
\]
Using the identity \(\csc^2 \theta - \cot^2 \theta = 1\), we substitute:
\[
1 + 2 \csc \theta \cot \theta = k^2
\]
Now, solving for \(\csc \theta\) gives:
\[
\csc \theta = \frac{k^2 + 1}{2k}
\]
Thus, the correct answer is option (1).