We are given that \( \cos A = \frac{\sqrt{3}}{2} \). First, recall the double angle identity for sine:
\[
\sin 2A = 2 \sin A \cos A.
\]
We already know that \( \cos A = \frac{\sqrt{3}}{2} \). To find \( \sin A \), use the Pythagorean identity:
\[
\sin^2 A + \cos^2 A = 1.
\]
Substitute \( \cos A = \frac{\sqrt{3}}{2} \) into the equation:
\[
\sin^2 A + \left( \frac{\sqrt{3}}{2} \right)^2 = 1,
\]
\[
\sin^2 A + \frac{3}{4} = 1.
\]
Now, subtract \( \frac{3}{4} \) from both sides:
\[
\sin^2 A = 1 - \frac{3}{4} = \frac{1}{4}.
\]
Take the square root of both sides:
\[
\sin A = \frac{1}{2} \quad \text{(since \( A \) is in the first quadrant, \( \sin A \) is positive)}.
\]
Now, substitute the values of \( \sin A \) and \( \cos A \) into the double angle identity:
\[
\sin 2A = 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}.
\]
Conclusion:
Therefore, the value of \( \sin 2A \) is \( \frac{\sqrt{3}}{2} \).