Step 1: Given information.
We are given $\cos A = \dfrac{7}{25}$.
In a right-angled triangle, $\cos A = \dfrac{\text{base}}{\text{hypotenuse}}$.
So, base $= 7$ and hypotenuse $= 25$.
Step 2: Find the perpendicular using the Pythagoras theorem.
\[
\text{Perpendicular}^2 = \text{Hypotenuse}^2 - \text{Base}^2
\]
\[
\text{Perpendicular}^2 = 25^2 - 7^2 = 625 - 49 = 576
\]
\[
\text{Perpendicular} = 24
\]
Step 3: Find $\tan A$ and $\cot A$.
\[
\tan A = \frac{\text{Perpendicular}}{\text{Base}} = \frac{24}{7}
\]
\[
\cot A = \frac{\text{Base}}{\text{Perpendicular}} = \frac{7}{24}
\]
Step 4: Calculate $\tan A + \cot A$.
\[
\tan A + \cot A = \frac{24}{7} + \frac{7}{24}
\]
\[
\tan A + \cot A = \frac{(24^2 + 7^2)}{24 \times 7} = \frac{576 + 49}{168} = \frac{625}{168}
\]
Step 5: Conclusion.
Hence, the value of $\tan A + \cot A$ is $\dfrac{625}{168}$.