If \( \cos(A - B) = \frac{\sqrt{3}}{2} \) and \( \sin(A + B) = \frac{\sqrt{3}}{2} \), where \( 0^\circ<(A + B) \leq 90^\circ \) and \( A>B \), then find the values of \( A \) and \( B \).
Show Hint
When solving for angles using trigonometric functions, use known values of trigonometric ratios for common angles (like \( 30^\circ, 45^\circ, 60^\circ \)) to simplify the solution.
We are given the equations:
\[
\cos(A - B) = \frac{\sqrt{3}}{2} \quad \text{and} \quad \sin(A + B) = \frac{\sqrt{3}}{2}.
\]
1. Solve for \( A - B \):
From \( \cos(A - B) = \frac{\sqrt{3}}{2} \), we know that:
\[
A - B = 30^\circ \quad \text{(since \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \))}.
\]
2. Solve for \( A + B \):
From \( \sin(A + B) = \frac{\sqrt{3}}{2} \), we know that:
\[
A + B = 60^\circ \quad \text{(since \( \sin(60^\circ) = \frac{\sqrt{3}}{2} \))}.
\]
3. Solve the system of equations:
Now we have the system of equations:
\[
A - B = 30^\circ \quad \text{and} \quad A + B = 60^\circ.
\]
Adding these two equations:
\[
2A = 90^\circ \quad \Rightarrow \quad A = 45^\circ.
\]
Substitute \( A = 45^\circ \) into \( A + B = 60^\circ \):
\[
45^\circ + B = 60^\circ \quad \Rightarrow \quad B = 15^\circ.
\]
Conclusion:
The values of \( A \) and \( B \) are \( A = 45^\circ \) and \( B = 15^\circ \).