If cosθ = \(\frac{-3}{5}\)- and π < θ < \(\frac{3π}{2}\), then tan \(\frac{ θ}{2}\) + sin \(\frac{ θ}{2}\)+ 2cos \(\frac{ θ}{2}\) =
-1
1
-2
2
Given $\cos \theta = -\frac{3}{5}$ with $\pi < \theta < \frac{3\pi}{2}$ (third quadrant), we need to evaluate $\tan \frac{\theta}{2} + \sin \frac{\theta}{2} + 2 \cos \frac{\theta}{2}$.
1. Determine the Quadrant for $\frac{\theta}{2}$:
Dividing the inequality $\pi < \theta < \frac{3\pi}{2}$ by 2 gives $\frac{\pi}{2} < \frac{\theta}{2} < \frac{3\pi}{4}$.
This places $\frac{\theta}{2}$ in the second quadrant where:
- $\sin \frac{\theta}{2} > 0$
- $\cos \frac{\theta}{2} < 0$
- $\tan \frac{\theta}{2} < 0$
2. Find $\cos \frac{\theta}{2}$:
Using the double-angle identity:
$\cos \theta = 2 \cos^2 \frac{\theta}{2} - 1$
$-\frac{3}{5} = 2 \cos^2 \frac{\theta}{2} - 1$
$2 \cos^2 \frac{\theta}{2} = \frac{2}{5}$
$\cos^2 \frac{\theta}{2} = \frac{1}{5}$
$\cos \frac{\theta}{2} = -\frac{1}{\sqrt{5}}$ (negative in second quadrant)
3. Find $\sin \frac{\theta}{2}$:
Using the identity $\cos \theta = 1 - 2 \sin^2 \frac{\theta}{2}$:
$-\frac{3}{5} = 1 - 2 \sin^2 \frac{\theta}{2}$
$2 \sin^2 \frac{\theta}{2} = \frac{8}{5}$
$\sin^2 \frac{\theta}{2} = \frac{4}{5}$
$\sin \frac{\theta}{2} = \frac{2}{\sqrt{5}}$ (positive in second quadrant)
4. Calculate $\tan \frac{\theta}{2}$:
$\tan \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{\frac{2}{\sqrt{5}}}{-\frac{1}{\sqrt{5}}} = -2$
5. Evaluate the Expression:
$\tan \frac{\theta}{2} + \sin \frac{\theta}{2} + 2 \cos \frac{\theta}{2} = -2 + \frac{2}{\sqrt{5}} + 2\left(-\frac{1}{\sqrt{5}}\right)$
$= -2 + \frac{2}{\sqrt{5}} - \frac{2}{\sqrt{5}} = -2$
Final Answer:
The value of the expression is ${-2}$.
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
| Trigonometrical equations | General Solutions |
| sin θ = 0 | θ = nπ |
| cos θ = 0 | θ = (nπ + π/2) |
| cos θ = 0 | θ = nπ |
| sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
| cos θ = 1 | θ = 2nπ |
| sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
| cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
| tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
| sin 2θ = sin 2α | θ = nπ ± α |
| cos 2θ = cos 2α | θ = nπ ± α |
| tan 2θ = tan 2α | θ = nπ ± α |