If cosθ = \(\frac{-3}{5}\)- and π < θ < \(\frac{3π}{2}\), then tan \(\frac{ θ}{2}\) + sin \(\frac{ θ}{2}\)+ 2cos \(\frac{ θ}{2}\) =
-1
1
-2
2
Given $\cos \theta = -\frac{3}{5}$ with $\pi < \theta < \frac{3\pi}{2}$ (third quadrant), we need to evaluate $\tan \frac{\theta}{2} + \sin \frac{\theta}{2} + 2 \cos \frac{\theta}{2}$.
1. Determine the Quadrant for $\frac{\theta}{2}$:
Dividing the inequality $\pi < \theta < \frac{3\pi}{2}$ by 2 gives $\frac{\pi}{2} < \frac{\theta}{2} < \frac{3\pi}{4}$.
This places $\frac{\theta}{2}$ in the second quadrant where:
- $\sin \frac{\theta}{2} > 0$
- $\cos \frac{\theta}{2} < 0$
- $\tan \frac{\theta}{2} < 0$
2. Find $\cos \frac{\theta}{2}$:
Using the double-angle identity:
$\cos \theta = 2 \cos^2 \frac{\theta}{2} - 1$
$-\frac{3}{5} = 2 \cos^2 \frac{\theta}{2} - 1$
$2 \cos^2 \frac{\theta}{2} = \frac{2}{5}$
$\cos^2 \frac{\theta}{2} = \frac{1}{5}$
$\cos \frac{\theta}{2} = -\frac{1}{\sqrt{5}}$ (negative in second quadrant)
3. Find $\sin \frac{\theta}{2}$:
Using the identity $\cos \theta = 1 - 2 \sin^2 \frac{\theta}{2}$:
$-\frac{3}{5} = 1 - 2 \sin^2 \frac{\theta}{2}$
$2 \sin^2 \frac{\theta}{2} = \frac{8}{5}$
$\sin^2 \frac{\theta}{2} = \frac{4}{5}$
$\sin \frac{\theta}{2} = \frac{2}{\sqrt{5}}$ (positive in second quadrant)
4. Calculate $\tan \frac{\theta}{2}$:
$\tan \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{\frac{2}{\sqrt{5}}}{-\frac{1}{\sqrt{5}}} = -2$
5. Evaluate the Expression:
$\tan \frac{\theta}{2} + \sin \frac{\theta}{2} + 2 \cos \frac{\theta}{2} = -2 + \frac{2}{\sqrt{5}} + 2\left(-\frac{1}{\sqrt{5}}\right)$
$= -2 + \frac{2}{\sqrt{5}} - \frac{2}{\sqrt{5}} = -2$
Final Answer:
The value of the expression is ${-2}$.
The following graph indicates the system containing 1 mole of gas involving various steps. When it moves from Z to X, the type of undergoing process is:
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |