Step 1: Understand the given condition.
We are given:
\[
\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma = 3\pi
\]
Since the range of \( \cos^{-1} x \) is from \( 0 \) to \( \pi \), each \( \cos^{-1} \) term individually lies between \( 0 \) and \( \pi \).
Thus, \( \cos^{-1} \alpha, \cos^{-1} \beta, \cos^{-1} \gamma \) must each be \( \pi \).
Hence:
\[
\cos^{-1} \alpha = \cos^{-1} \beta = \cos^{-1} \gamma = \pi
\]
From this:
\[
\cos(\pi) = -1
\quad \Rightarrow \quad
\alpha = \beta = \gamma = -1
\]
Step 2: Find the required expression.
We are asked to find:
\[
\alpha(\beta+\gamma) + \beta(\gamma+\alpha) + \gamma(\alpha+\beta)
\]
Substituting \( \alpha = \beta = \gamma = -1 \):
First term:
\[
\alpha(\beta+\gamma) = (-1)((-1)+(-1)) = (-1)(-2) = 2
\]
Second term:
\[
\beta(\gamma+\alpha) = (-1)((-1)+(-1)) = (-1)(-2) = 2
\]
Third term:
\[
\gamma(\alpha+\beta) = (-1)((-1)+(-1)) = (-1)(-2) = 2
\]
Adding:
\[
2 + 2 + 2 = 6
\]
Thus, the value is \( 6 \).
Final Answer: \( 6 \).