If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$:
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
The matrix acquired by interchanging the rows and columns of the parent matrix is called the Transpose matrix. The transpose matrix is also defined as - “A Matrix which is formed by transposing all the rows of a given matrix into columns and vice-versa.”
The transpose matrix of A is represented by A’. It can be better understood by the given example:
Now, in Matrix A, the number of rows was 4 and the number of columns was 3 but, on taking the transpose of A we acquired A’ having 3 rows and 4 columns. Consequently, the vertical Matrix gets converted into Horizontal Matrix.
Hence, we can say if the matrix before transposing was a vertical matrix, it will be transposed to a horizontal matrix and vice-versa.
Read More: Transpose of a Matrix