For a 2×2 matrix \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \] the inverse is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \]
Here, \( a = 2 \), \( b = -3 \), \( c = 4 \), \( d = 6 \).
Determinant: \[ \det(A) = (2)(6) - (-3)(4) = 12 + 12 = 24. \]
Now substitute into the formula: \[ A^{-1} = \frac{1}{24} \begin{bmatrix} 6 & 3 \\ -4 & 2 \end{bmatrix}. \]
Simplify each element: \[ A^{-1} = \begin{bmatrix} \frac{6}{24} & \frac{3}{24} \\ \frac{-4}{24} & \frac{2}{24} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{8} \\ -\frac{1}{6} & \frac{1}{12} \end{bmatrix}. \]
Hence, the inverse of the given matrix is: \[ \boxed{ A^{-1} = \begin{bmatrix} \frac{1}{4} & \frac{1}{8} \\ -\frac{1}{6} & \frac{1}{12} \end{bmatrix}. } \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: