\( 8 \)
The matrix is given as: \[ A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \] The determinant of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated as \( ad - bc \). For matrix \( A \): \[ a = 2, \ b = 3, \ c = 1, \ d = 4 \] \[ \det(A) = (2 \cdot 4) - (3 \cdot 1) = 8 - 3 = 5 \] Thus, the determinant of \( A \) is: \[ {5} \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to