Given matrix:
$$ A = \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} $$
We are asked to find the value of \(a + d\) where:
$$ A^{2018} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$
Step 1: Find the powers of matrix A.
The matrix \( A \) is a 2x2 upper triangular matrix. We will explore the pattern of powers of \( A \) to find \( A^{2018} \).
The first few powers of \( A \) are:
- \( A^1 = A = \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} \)
- \( A^2 = \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \)
- \( A^3 = \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & -i \end{bmatrix} \)
- \( A^4 = \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \)
Step 2: Observe the pattern of powers.
From the above calculations, we observe the following pattern:
- The top-left element of \( A^n \) is always 1.
- The top-right element of \( A^n \) increases linearly by 1 each time, i.e., \( 1, 2, 3, 4, \dots \).
- The bottom-left element is always 0.
- The bottom-right element alternates between powers of \(i\), i.e., \( i, -1, -i, 1, \dots \).
Therefore, the general form of \( A^n \) is:
$$ A^n = \begin{bmatrix} 1 & n \\ 0 & i^n \end{bmatrix} $$
Step 3: Apply the pattern to \( A^{2018} \).
From the pattern, we see that for even \(n\), \( i^n = 1 \). Since \( 2018 \) is even, we have:
$$ A^{2018} = \begin{bmatrix} 1 & 2018 \\ 0 & 1 \end{bmatrix} $$
Step 4: Find \(a + d\).
In the matrix \( A^{2018} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), we have \(a = 1\) and \(d = 1\). Therefore:
$$ a + d = 1 + 1 = 2 $$
Conclusion: The value of \(a + d\) is \(2\).
Thus, the correct answer is \( 2 \).