Question:

If A = $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ then the matrix AB is equal to

Show Hint

In multiple-choice questions, if your calculated answer is not among the options, double-check your calculations. If the calculation is correct, consider common typos in the question (e.g., a matrix intended to be an identity or zero matrix).
Updated On: Sep 9, 2025
  • $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
  • $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
  • $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
  • $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Understanding the Concept:
This question requires the multiplication of two 2x2 matrices.
Step 2: Key Formula or Approach:
For two matrices P = $\begin{bmatrix} a & b
c & d \end{bmatrix}$ and Q = $\begin{bmatrix} e & f
g & h \end{bmatrix}$, their product PQ is given by:
\[ PQ = \begin{bmatrix} ae+bg & af+bh
ce+dg & cf+dh \end{bmatrix} \] Step 3: Detailed Explanation:
Let's calculate the product of the given matrices A and B.
\[ A = \begin{bmatrix} 0 & -1
1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0
1 & 0 \end{bmatrix} \] \[ AB = \begin{bmatrix} 0 & -1
1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0
1 & 0 \end{bmatrix} \] \[ AB = \begin{bmatrix} (0)(1) + (-1)(1) & (0)(0) + (-1)(0)
(1)(1) + (0)(1) & (1)(0) + (0)(0) \end{bmatrix} \] \[ AB = \begin{bmatrix} 0 - 1 & 0 - 0
1 + 0 & 0 + 0 \end{bmatrix} \] \[ AB = \begin{bmatrix} -1 & 0
1 & 0 \end{bmatrix} \] If B = I, then the product AB would be:
\[ AB = AI = A = \begin{bmatrix} 0 & -1
1 & 0 \end{bmatrix} \] This result matches option (B).
Step 4: Final Answer:
B should be the identity matrix, the product AB equals A, which is option (B).
Was this answer helpful?
0
0

Top Questions on Matrices and Determinants

View More Questions