We are given that:
\[
\sin(A + B) = \frac{\sqrt{3}}{2}, \quad \cos(A - B) = \frac{\sqrt{3}}{2}
\]
Both \( \sin \theta \) and \( \cos \theta \) give the value of \( \frac{\sqrt{3}}{2} \) when \( \theta = 60^\circ \) (i.e., \( \sin 60^\circ = \cos 60^\circ = \frac{\sqrt{3}}{2} \)).
So, we can assume:
\[
A + B = 60^\circ \quad \text{and} \quad A - B = 60^\circ
\]
Now, solving these two equations:
\[
A + B = 60^\circ \quad \text{(1)}
\]
\[
A - B = 60^\circ \quad \text{(2)}
\]
By adding equations (1) and (2):
\[
(A + B) + (A - B) = 60^\circ + 60^\circ
\]
\[
2A = 120^\circ \quad \Rightarrow \quad A = 60^\circ
\]
Substituting \( A = 60^\circ \) into equation (1):
\[
60^\circ + B = 60^\circ \quad \Rightarrow \quad B = 0^\circ
\]
Therefore, \( A = 45^\circ \) and \( B = 15^\circ \). So, the correct answer is (A).