Step 1: Use the trigonometric identities.
We are given \( A = 30^\circ \). The identity for \( \tan^2 A \) and \( \cot^2 A \) is:
\[
\tan^2 A = \left( \frac{\sin A}{\cos A} \right)^2 \quad \text{and} \quad \cot^2 A = \left( \frac{\cos A}{\sin A} \right)^2.
\]
But we can simplify this question using known values of trigonometric functions for \( 30^\circ \):
\[
\tan 30^\circ = \frac{1}{\sqrt{3}} \quad \text{and} \quad \cot 30^\circ = \sqrt{3}.
\]
Step 2: Substitute the values into the expression.
Now, substitute \( \tan^2 30^\circ = \left( \frac{1}{\sqrt{3}} \right)^2 = \frac{1}{3} \) and \( \cot^2 30^\circ = (\sqrt{3})^2 = 3 \) into the expression:
\[
\frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{1 + \frac{1}{3}}{1 + 3} = \frac{\frac{4}{3}}{4} = \frac{4}{3} \times \frac{1}{4} = \frac{1}{3}.
\]
Step 3: Conclusion.
Therefore, the value of \( \frac{1 + \tan^2 A}{1 + \cot^2 A} \) is \( \frac{1}{3} \).