Given \( |\vec{a}| = 1 \), \( |\vec{b}| = 4 \), and \( \vec{a} \times \vec{b} = 2 \), we can find the magnitude of \( \vec{a} \times \vec{b} \) and then use it to determine \( \vec{c} \).
Calculate \( |\vec{a} \times \vec{b}| \):
\[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \theta = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3} \]
Find \( |\vec{c}| \) using \( \vec{c} = 2(\vec{a} \times \vec{b}) - 3\vec{b} \):
\[ |\vec{c}|^2 = 4|\vec{a} \times \vec{b}|^2 + 9|\vec{b}|^2 = 4(12) + 9(16) = 48 + 144 = 192 \]
\[ |\vec{c}| = 8\sqrt{3} \]
Find \( \cos \theta \) between \( \vec{b} \) and \( \vec{c} \):
\[ \cos \theta = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|} = \frac{-48}{4 \times 8\sqrt{3}} = -\frac{\sqrt{3}}{2} \]
Therefore, the angle \( \theta = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \).