To calculate the work done on an ideal gas during isothermal, reversible expansion, we use the formula:
\( w = -nRT \ln\left(\frac{V_f}{V_i}\right) \), where:
\( n = 5 \) moles,
\( R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1} \),
\( T = 300 \, \text{K} \),
\( V_i = 10 \, \text{L} \),
\( V_f = 100 \, \text{L} \).
Substitute the values into the equation:
\( w = -5 \times 8.314 \times 300 \ln\left(\frac{100}{10}\right) \)
Calculate the natural logarithm:
\( \ln(10) \approx 2.302 \)
Calculate the work:
\( w = -5 \times 8.314 \times 300 \times 2.302 \)
\( w \approx -28721 \, \text{J} \)
Thus, the value of \( x \) is 28721. This value fits perfectly within the provided range [28721, 28721].
For an isothermal reversible expansion, the work done \( W \) is given by:
\[ W = -2.303nRT \log \left(\frac{V_f}{V_i}\right) \]Given:
Substitute into the formula:
\[ W = -2.303 \times 5 \times 8.314 \times 300 \times \log \left(\frac{100}{10}\right) \] \[ W = -2.303 \times 5 \times 8.314 \times 300 \times \log(10) \]Since \( \log(10) = 1 \):
\[ W = -2.303 \times 5 \times 8.314 \times 300 \] \[ W = -28720.713 \, \text{J} \]Rounding to the nearest integer:
\[ W = -28721 \, \text{J} \]Thus, \( x = 28721 \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.