For an isothermal reversible expansion, the work done \( W \) is given by:
\[ W = -2.303nRT \log \left(\frac{V_f}{V_i}\right) \]Given:
Substitute into the formula:
\[ W = -2.303 \times 5 \times 8.314 \times 300 \times \log \left(\frac{100}{10}\right) \] \[ W = -2.303 \times 5 \times 8.314 \times 300 \times \log(10) \]Since \( \log(10) = 1 \):
\[ W = -2.303 \times 5 \times 8.314 \times 300 \] \[ W = -28720.713 \, \text{J} \]Rounding to the nearest integer:
\[ W = -28721 \, \text{J} \]Thus, \( x = 28721 \).
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.