To calculate the work done on an ideal gas during isothermal, reversible expansion, we use the formula:
\( w = -nRT \ln\left(\frac{V_f}{V_i}\right) \), where:
\( n = 5 \) moles,
\( R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1} \),
\( T = 300 \, \text{K} \),
\( V_i = 10 \, \text{L} \),
\( V_f = 100 \, \text{L} \).
Substitute the values into the equation:
\( w = -5 \times 8.314 \times 300 \ln\left(\frac{100}{10}\right) \)
Calculate the natural logarithm:
\( \ln(10) \approx 2.302 \)
Calculate the work:
\( w = -5 \times 8.314 \times 300 \times 2.302 \)
\( w \approx -28721 \, \text{J} \)
Thus, the value of \( x \) is 28721. This value fits perfectly within the provided range [28721, 28721].
For an isothermal reversible expansion, the work done \( W \) is given by:
\[ W = -2.303nRT \log \left(\frac{V_f}{V_i}\right) \]Given:
Substitute into the formula:
\[ W = -2.303 \times 5 \times 8.314 \times 300 \times \log \left(\frac{100}{10}\right) \] \[ W = -2.303 \times 5 \times 8.314 \times 300 \times \log(10) \]Since \( \log(10) = 1 \):
\[ W = -2.303 \times 5 \times 8.314 \times 300 \] \[ W = -28720.713 \, \text{J} \]Rounding to the nearest integer:
\[ W = -28721 \, \text{J} \]Thus, \( x = 28721 \).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to