Step 1: Use the identity for cotangent.
We are given that:
\[
3 \cot \theta = 4 \quad \Rightarrow \quad \cot \theta = \frac{4}{3}
\]
Recall that \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), so:
\[
\frac{\cos \theta}{\sin \theta} = \frac{4}{3}
\]
Step 2: Use the identity \( \cos^2 \theta + \sin^2 \theta = 1 \).
Let \( \cos \theta = 4k \) and \( \sin \theta = 3k \), where \( k \) is a constant. From the identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we get:
\[
(4k)^2 + (3k)^2 = 1
\]
\[
16k^2 + 9k^2 = 1
\]
\[
25k^2 = 1
\]
\[
k^2 = \frac{1}{25} \quad \Rightarrow \quad k = \frac{1}{5}
\]
Step 3: Calculate \( \cos \theta \).
Thus, \( \cos \theta = 4k = \frac{4}{5} \).
Step 4: Conclusion.
The value of \( \cos \theta \) is \( \frac{4}{5} \), so the correct answer is (A).