It is given that 3cot A = 4
Or, cot A =\(\frac{4}{3}\)
Consider a right triangle ABC, right-angled at point B.
cot(A) = \(\frac{AB}{BC} =\frac{ 4}{3}\)
If AB is 4k, then BC will be 3k, where k is a positive integer.
In \(Δ\)ABC,
(AC)2 = (AB)2 + (BC)2
= (4k)2 + (3k)2
= 16k2 + 9k2
= 25k2
\(⇒\) AC = 5k
tan(A) = \(\frac{BC}{AB} =\frac{ 3}{4}\)
sin (A) = \(\frac{BC}{AC} = \frac{3}{5}\)
cos (A) = \(\frac{AB}{AC} =\frac{ 4}{5}\)
\(\frac{1-tan^2A}{1+tan^2A}=\frac{1-(\frac{3}{4})^2}{1+(\frac{3}{4})^2}\)
\(=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}\)
\(=\frac{7}{25}\)
cos2 A - sin2 A \(=(\frac{4}{5})^2-(\frac{3}{5})^2\)
\(=\frac{16}{25}-\frac{9}{25}\)
\(=\frac{7}{25}\)
\(∴ \frac{(1-\text{tan}^2 A)}{(1+\text{tan}^2 A)} = \text{cos}^2 A –\text{ sin }^2 A\)
If $\tan \theta = \tfrac{3}{4}$, then the value of $\cos \theta$ will be:
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम
The relationship between the sides and angles of a right-angle triangle is described by trigonometry functions, sometimes known as circular functions. These trigonometric functions derive the relationship between the angles and sides of a triangle. In trigonometry, there are three primary functions of sine (sin), cosine (cos), tangent (tan). The other three main functions can be derived from the primary functions as cotangent (cot), secant (sec), and cosecant (cosec).
sin x = a/h
cos x = b/h
tan x = a/b
Tan x can also be represented as sin x/cos x
sec x = 1/cosx = h/b
cosec x = 1/sinx = h/a
cot x = 1/tan x = b/a