Step 1: Given \( 15 \cot A = 8 \Rightarrow \cot A = \dfrac{8}{15} \). So, in a right triangle: \[ \cot A = \frac{\text{adjacent}}{\text{opposite}} = \frac{8}{15} \] Using Pythagoras Theorem, hypotenuse = \[ \sqrt{8^2 + 15^2} = \sqrt{64 + 225} = \sqrt{289} = 17 \]
Step 2: Find \( \sin A \) \[ \sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{15}{17} \quad \text{(But note: opposite side to A is 15, not 8)} \Rightarrow \boxed{\sin A = \frac{8}{17}} \]