Step 1: Use identities to simplify.
We use:
\[
\sec A = \frac{1}{\cos A}, \quad \tan A = \frac{\sin A}{\cos A}
\]
So,
\[
(\sec A + \tan A)(1 - \sin A) = \left( \frac{1}{\cos A} + \frac{\sin A}{\cos A} \right)(1 - \sin A)
\]
\[
= \frac{1 + \sin A}{\cos A} \cdot (1 - \sin A)
\]
Step 2: Apply identity \( (a + b)(a - b) = a^2 - b^2 \):
\[
= \frac{(1 + \sin A)(1 - \sin A)}{\cos A} = \frac{1 - \sin^2 A}{\cos A}
\]
Step 3: Use Pythagorean identity \( \sin^2 A + \cos^2 A = 1 \):
\[
1 - \sin^2 A = \cos^2 A
\]
So,
\[
\frac{\cos^2 A}{\cos A} = \cos A
\]