Step 1: Analyze Option (1)
Recall the identity: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] So, Option (1) is incorrect because it falsely states that: \[ \sin(A + B) = \sin A + \sin B \]
Step 2: Analyze Option (2)
From the unit circle or sine graph: \[ \text{For } 0^\circ \leq \theta \leq 90^\circ, \sin \theta \text{ increases from } 0 \text{ to } 1 \] Hence, Option (2) is true.
Step 3: Analyze Option (3)
For \( 0^\circ \leq \theta \leq 90^\circ \), the value of \( \cos \theta \) actually decreases: \[ \cos(0^\circ) = 1,\quad \cos(90^\circ) = 0 \] So, Option (3) is false.
Step 4: Analyze Option (4)
\[ \sin \theta = \cos \theta \text{ only when } \theta = 45^\circ \] This is not true for all values of \( \theta \), so Option (4) is false.