From the given equation: \[ 2A + B + X = 0 \] Rearranging for \( X \): \[ X = - (2A + B) \]
Step 1: Calculate \( 2A \) \[ 2A = 2 \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 6 & 8 \end{bmatrix}. \]
Step 2: Calculate \( 2A + B \) \[ 2A + B = \begin{bmatrix} -2 & 4 \\ 6 & 8 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 5 & -2 \end{bmatrix} = \begin{bmatrix} -2 + 3 & 4 + 1 \\ 6 + 5 & 8 + (-2) \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 11 & 6 \end{bmatrix}. \]
Step 3: Substitute into \( X = - (2A + B) \) \[ X = - \begin{bmatrix} 1 & 5 \\ 11 & 6 \end{bmatrix} = \begin{bmatrix} -1 & -5 \\ -11 & -6 \end{bmatrix}. \]
Therefore, the required matrix is: \[ \boxed{ X = \begin{bmatrix} -1 & -5 \\ -11 & -6 \end{bmatrix}. } \]
Correct Answer:
(C) \( \begin{bmatrix} -1 & -5 \\ -11 & -6 \end{bmatrix} \)
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: