We are given that
\[
2 \cos^2 45^\circ - 1 = \cos \theta.
\]
First, we know that \( \cos 45^\circ = \frac{1}{\sqrt{2}} \), so
\[
\cos^2 45^\circ = \left( \frac{1}{\sqrt{2}} \right)^2 = \frac{1}{2}.
\]
Now, substitute \( \cos^2 45^\circ \) into the equation:
\[
2 \times \frac{1}{2} - 1 = \cos \theta.
\]
Simplifying the left-hand side:
\[
1 - 1 = \cos \theta.
\]
This gives:
\[
\cos \theta = 0.
\]
Now, we need to find the value of \( \theta \) such that \( \cos \theta = 0 \). The cosine function is zero at
\[
\theta = 90^\circ \text{ or } \theta = 270^\circ.
\]
Thus, the possible values of \( \theta \) are \( 90^\circ \) and \( 270^\circ \).
Conclusion:
The values of \( \theta \) are \( 90^\circ \) and \( 270^\circ \).