We are given that:
\[
(1 - 4i)^3 = a + ib
\]
To expand \( (1 - 4i)^3 \), we use the binomial expansion. The general form of the expansion is:
\[
(a - bi)^3 = a^3 - 3a^2bi + 3ab^2i^2 - b^3i^3
\]
Since \( i^2 = -1 \) and \( i^3 = -i \), we get:
\[
(1 - 4i)^3 = 1^3 - 3(1)^2(4i) + 3(1)(4i)^2 - (4i)^3
\]
First, compute each term:
\[
1^3 = 1
\]
\[
-3(1)^2(4i) = -12i
\]
\[
3(1)(4i)^2 = 3 \times 1 \times 16(-1) = -48
\]
\[
-(4i)^3 = -64i^3 = 64i
\]
Now, add the real and imaginary parts:
\[
(1 - 4i)^3 = (1 - 48) + (-12i + 64i) = -47 + 52i
\]
Thus, the values of \( a \) and \( b \) are:
\[
a = -47, \quad b = 52
\]