
For \( m \):
\[ \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \cdots + \frac{1}{\sqrt{99} + \sqrt{100}} = m \]
Rationalize each term:
\[ \frac{\sqrt{1} - \sqrt{2}}{-1} + \frac{\sqrt{2} - \sqrt{3}}{-1} + \cdots + \frac{\sqrt{99} - \sqrt{100}}{-1} = m \]
This telescopes to:
\[ \sqrt{100} - 1 = m \implies m = 9 \]
For \( n \):
\[ \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{99 \cdot 100} = n \]
Rewrite as:
\[ \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{99} - \frac{1}{100}\right) = n \]
This telescopes to:
\[ 1 - \frac{1}{100} = n \implies n = \frac{99}{100} \]
Thus, \((m, n) = (9, \frac{99}{100})\).
Substitute into the equation:
\[ 11(9) - 100\left(\frac{99}{100}\right) = 99 - 99 = 0 \]
Correct Ans. option (4) \( 11x - 100y = 0 \)
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If an optical medium possesses a relative permeability of $ \frac{10}{\pi} $ and relative permittivity of $ \frac{1}{0.0885} $, then the velocity of light is greater in vacuum than in that medium by ________ times. $ (\mu_0 = 4\pi \times 10^{-7} \, \text{H/m}, \quad \epsilon_0 = 8.85 \times 10^{-12} \, \text{F/m}, \quad c = 3 \times 10^8 \, \text{m/s}) $