Question:

Given vectors \[ \vec{A} = 9\hat{i} - 5\hat{j} + 2\hat{k}, \vec{B} = 11\hat{i} + 4\hat{j} + \hat{k}, \vec{C} = -7\hat{i} + 14\hat{j} - 3\hat{k} \] which of the following statements are TRUE?

Show Hint

Always test coplanarity with the scalar triple product. If it is zero, vectors are coplanar. Cross product helps check perpendicularity and parallelism.
Updated On: Aug 31, 2025
  • Vectors $\vec{A}, \vec{B}, \vec{C}$ are coplanar
  • The scalar triple product of $\vec{A}, \vec{B}, \vec{C}$ is zero
  • $\vec{A}$ and $\vec{B}$ are perpendicular
  • $\vec{C}$ is parallel to $\vec{A} \times \vec{B}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B

Solution and Explanation

Step 1: Dot product of $\vec{A}$ and $\vec{B}$.

 \[ \vec{A}\cdot \vec{B} = 9(11) + (-5)(4) + 2(1) = 99 - 20 + 2 = 81 \neq 0 \] So, $\vec{A}$ and $\vec{B}$ are not perpendicular. $\Rightarrow$ (C) false.

Step 2: Scalar triple product. 

 \[ \vec{A}\cdot(\vec{B}\times \vec{C}) \] \[ \vec{B}\times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 11 & 4 & 1 \\ -7 & 14 & -3 \end{vmatrix} = (-4-14)\hat{i} - (-33+7)\hat{j} + (154+28)\hat{k} \] \[ = -18\hat{i} + 26\hat{j} + 182\hat{k} \] Now, \[ \vec{A}\cdot(\vec{B}\times \vec{C}) = 9(-18) + (-5)(26) + 2(182) = -162 -130 + 364 = 72 \] Wait – not zero. Let's recheck carefully. \[ \vec{B}\times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 11 & 4 & 1 \\ -7 & 14 & -3 \end{vmatrix} \] \[ = (4\cdot -3 - 1\cdot 14)\hat{i} - (11\cdot -3 - 1\cdot -7)\hat{j} + (11\cdot 14 - 4\cdot -7)\hat{k} \] \[ = (-12 -14)\hat{i} - (-33+7)\hat{j} + (154+28)\hat{k} \] \[ = -26\hat{i} + 26\hat{j} + 182\hat{k} \] Now dot with $\vec{A}$: \[ \vec{A}\cdot(\vec{B}\times \vec{C}) = 9(-26) + (-5)(26) + 2(182) = -234 -130 + 364 = 0 \] So scalar triple product = 0 $\Rightarrow$ (A) and (B) true.

Step 3: Parallel check. 

$\vec{A}\times \vec{B}$ must be checked against $\vec{C}$. \[ \vec{A}\times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 9 & -5 & 2 \\ 11 & 4 & 1 \end{vmatrix} = (-5\cdot 1 - 2\cdot 4)\hat{i} - (9\cdot 1 - 2\cdot 11)\hat{j} + (9\cdot 4 - (-5)\cdot 11)\hat{k} \] \[ = (-5 -8)\hat{i} - (9 -22)\hat{j} + (36+55)\hat{k} = -13\hat{i} + 13\hat{j} + 91\hat{k} \] Compare with $\vec{C} = -7\hat{i}+14\hat{j}-3\hat{k}$. Not scalar multiples. $\Rightarrow$ not parallel. So (D) false. \[ \boxed{\text{Correct statements: (A) and (B)}} \]

Was this answer helpful?
0
0