Step 1: Dot product of $\vec{A}$ and $\vec{B}$.
\[ \vec{A}\cdot \vec{B} = 9(11) + (-5)(4) + 2(1) = 99 - 20 + 2 = 81 \neq 0 \] So, $\vec{A}$ and $\vec{B}$ are not perpendicular. $\Rightarrow$ (C) false.
Step 2: Scalar triple product.
\[ \vec{A}\cdot(\vec{B}\times \vec{C}) \] \[ \vec{B}\times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 11 & 4 & 1 \\ -7 & 14 & -3 \end{vmatrix} = (-4-14)\hat{i} - (-33+7)\hat{j} + (154+28)\hat{k} \] \[ = -18\hat{i} + 26\hat{j} + 182\hat{k} \] Now, \[ \vec{A}\cdot(\vec{B}\times \vec{C}) = 9(-18) + (-5)(26) + 2(182) = -162 -130 + 364 = 72 \] Wait – not zero. Let's recheck carefully. \[ \vec{B}\times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 11 & 4 & 1 \\ -7 & 14 & -3 \end{vmatrix} \] \[ = (4\cdot -3 - 1\cdot 14)\hat{i} - (11\cdot -3 - 1\cdot -7)\hat{j} + (11\cdot 14 - 4\cdot -7)\hat{k} \] \[ = (-12 -14)\hat{i} - (-33+7)\hat{j} + (154+28)\hat{k} \] \[ = -26\hat{i} + 26\hat{j} + 182\hat{k} \] Now dot with $\vec{A}$: \[ \vec{A}\cdot(\vec{B}\times \vec{C}) = 9(-26) + (-5)(26) + 2(182) = -234 -130 + 364 = 0 \] So scalar triple product = 0 $\Rightarrow$ (A) and (B) true.
Step 3: Parallel check.
$\vec{A}\times \vec{B}$ must be checked against $\vec{C}$. \[ \vec{A}\times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 9 & -5 & 2 \\ 11 & 4 & 1 \end{vmatrix} = (-5\cdot 1 - 2\cdot 4)\hat{i} - (9\cdot 1 - 2\cdot 11)\hat{j} + (9\cdot 4 - (-5)\cdot 11)\hat{k} \] \[ = (-5 -8)\hat{i} - (9 -22)\hat{j} + (36+55)\hat{k} = -13\hat{i} + 13\hat{j} + 91\hat{k} \] Compare with $\vec{C} = -7\hat{i}+14\hat{j}-3\hat{k}$. Not scalar multiples. $\Rightarrow$ not parallel. So (D) false. \[ \boxed{\text{Correct statements: (A) and (B)}} \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
The equation of a closed curve in two-dimensional polar coordinates is given by \( r = \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \). The area enclosed by the curve is ___________ (answer in integer).
For a three-bar truss loaded as shown in the figure, the magnitude of the force in the horizontal member AB is ____________ N (answer in integer).
A 4 × 4 digital image has pixel intensities (U) as shown in the figure. The number of pixels with \( U \leq 4 \) is:
Column-I has statements made by Shanthala; and, Column-II has responses given by Kanishk.