Step 1: Understanding the Concept:
The problem asks for the directional derivative of a scalar function at a given point in a specified direction. The scalar function is \( \phi = \nabla \cdot (\nabla f) = \nabla^2 f \), which is the Laplacian of \(f\). The direction is that of the normal to a given surface.
Step 2: Key Formula or Approach:
1. Calculate the scalar function \( \phi = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \).
2. Find the gradient of this new scalar function, \( \nabla \phi \).
3. Find the normal vector to the surface \( S(x,y,z) = xy^2z - 3x - z^2 = 0 \) by calculating its gradient, \( \nabla S \).
4. Find the unit vector \( \hat{u} \) in the direction of the normal.
5. The directional derivative is \( D_{\hat{u}}\phi = \nabla \phi \cdot \hat{u} \).
Step 3: Detailed Explanation:
1. Calculate \( \phi = \nabla^2 f \):
\( f = 2x^3y^2z^4 \)
\( \frac{\partial f}{\partial x} = 6x^2y^2z^4 \implies \frac{\partial^2 f}{\partial x^2} = 12xy^2z^4 \)
\( \frac{\partial f}{\partial y} = 4x^3yz^4 \implies \frac{\partial^2 f}{\partial y^2} = 4x^3z^4 \)
\( \frac{\partial f}{\partial z} = 8x^3y^2z^3 \implies \frac{\partial^2 f}{\partial z^2} = 24x^3y^2z^2 \)
\( \phi = \nabla^2 f = 12xy^2z^4 + 4x^3z^4 + 24x^3y^2z^2 \)
2. Find \( \nabla \phi \) at (1, -2, 1):
First, find \( \phi(1, -2, 1) = 12(1)(-2)^2(1)^4 + 4(1)^3(1)^4 + 24(1)^3(-2)^2(1)^2 = 48 + 4 + 96 = 148 \).
Now find the gradient of \( \phi \):
\( \frac{\partial \phi}{\partial x} = 12y^2z^4 + 12x^2z^4 + 72x^2y^2z^2 \). At (1,-2,1): \( 12(4)(1) + 12(1)(1) + 72(1)(4)(1) = 48 + 12 + 288 = 348 \).
\( \frac{\partial \phi}{\partial y} = 24xyz^4 + 48x^3yz^2 \). At (1,-2,1): \( 24(1)(-2)(1) + 48(1)(-2)(1) = -48 - 96 = -144 \).
\( \frac{\partial \phi}{\partial z} = 48xy^2z^3 + 16x^3z^3 + 48x^3y^2z \). At (1,-2,1): \( 48(1)(4)(1) + 16(1)(1) + 48(1)(4)(1) = 192 + 16 + 192 = 400 \).
So, \( \nabla \phi(1, -2, 1) = 348\hat{i} - 144\hat{j} + 400\hat{k} \).
3. Find the normal vector to the surface:
Let \( S(x,y,z) = xy^2z - 3x - z^2 \).
\( \nabla S = (y^2z - 3)\hat{i} + (2xyz)\hat{j} + (xy^2 - 2z)\hat{k} \).
At (1, -2, 1):
\( \nabla S = ((-2)^2(1) - 3)\hat{i} + (2(1)(-2)(1))\hat{j} + ((1)(-2)^2 - 2(1))\hat{k} \)
\( \nabla S = (4 - 3)\hat{i} - 4\hat{j} + (4 - 2)\hat{k} = 1\hat{i} - 4\hat{j} + 2\hat{k} \).
This is the direction vector \(\vec{v}\).
4. Find the unit vector \( \hat{u} \):
\( |\vec{v}| = \sqrt{1^2 + (-4)^2 + 2^2} = \sqrt{1 + 16 + 4} = \sqrt{21} \).
\( \hat{u} = \frac{\vec{v}}{|\vec{v}|} = \frac{1}{\sqrt{21}}(1\hat{i} - 4\hat{j} + 2\hat{k}) \).
5. Calculate the directional derivative:
\( D_{\hat{u}}\phi = \nabla \phi \cdot \hat{u} = (348\hat{i} - 144\hat{j} + 400\hat{k}) \cdot \frac{1}{\sqrt{21}}(1\hat{i} - 4\hat{j} + 2\hat{k}) \)
\( = \frac{1}{\sqrt{21}} [348(1) + (-144)(-4) + 400(2)] \)
\( = \frac{1}{\sqrt{21}} [348 + 576 + 800] = \frac{1724}{\sqrt{21}} \).
Step 4: Final Answer:
The directional derivative is \( \frac{1724}{\sqrt{21}} \).