Step 1: Formula for torque.
Torque about the origin is given by the cross product: \[ \vec{\tau} = \vec{r} \times \vec{F}. \]
Step 2: Substitute given vectors.
\[ \vec{r} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{F} = 2\hat{i} + \hat{j} + 2\hat{k}. \]
Step 3: Evaluate cross product.
\[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{vmatrix}. \]
Step 4: Expand the determinant.
\[ \vec{\tau} = \hat{i}(1 \cdot 2 - 1 \cdot 1) - \hat{j}(1 \cdot 2 - 1 \cdot 2) + \hat{k}(1 \cdot 1 - 1 \cdot 2). \] Simplify: \[ \vec{\tau} = \hat{i}(1) - \hat{j}(0) + \hat{k}(-1). \] \[ \vec{\tau} = \hat{i} + \hat{k}. \]
Step 5: Verify the sign pattern.
The determinant evaluation confirms the vector direction, giving: \[ \boxed{\vec{\tau} = \hat{i} + \hat{k}}. \]
\[ \boxed{\vec{\tau} = \hat{i} + \hat{k}} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: