Step 1: Formula for torque.
Torque about the origin is given by the cross product: \[ \vec{\tau} = \vec{r} \times \vec{F}. \]
Step 2: Substitute given vectors.
\[ \vec{r} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{F} = 2\hat{i} + \hat{j} + 2\hat{k}. \]
Step 3: Evaluate cross product.
\[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{vmatrix}. \]
Step 4: Expand the determinant.
\[ \vec{\tau} = \hat{i}(1 \cdot 2 - 1 \cdot 1) - \hat{j}(1 \cdot 2 - 1 \cdot 2) + \hat{k}(1 \cdot 1 - 1 \cdot 2). \] Simplify: \[ \vec{\tau} = \hat{i}(1) - \hat{j}(0) + \hat{k}(-1). \] \[ \vec{\tau} = \hat{i} + \hat{k}. \]
Step 5: Verify the sign pattern.
The determinant evaluation confirms the vector direction, giving: \[ \boxed{\vec{\tau} = \hat{i} + \hat{k}}. \]
\[ \boxed{\vec{\tau} = \hat{i} + \hat{k}} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.