\( \hat{i} \) and \( \hat{j} \) denote unit vectors in the \( x \) and \( y \) directions, respectively. The outward flux of the two-dimensional vector field \( \vec{v} = x \hat{i} + y \hat{j} \) over the unit circle centered at the origin is ___________ (rounded off to two decimal places).
An approximate solution of the equation \( x^3 - 17 = 0 \) is to be obtained using the Newton-Raphson method. If the initial guess is \( x_0 = 2 \), the value at the end of the first iteration is \( x_1 = \) ________ (rounded off to two decimal places).
Consider the ordinary differential equation:
The equation of a closed curve in two-dimensional polar coordinates is given by \( r = \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \). The area enclosed by the curve is ___________ (answer in integer).
The maximum value of the function \( f(x) = (x - 1)(x - 2)(x - 3) \) in the domain [0, 3] occurs at \( x = \) _________ (rounded off to two decimal places).
The partial differential equation \[ \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y^2} = 0 \] is ________.