The torque \( \mathbf{\tau} \) due to a force \( \mathbf{F} \) acting on a particle with position vector \( \mathbf{r} \) is given by the cross product:
\[
\mathbf{\tau} = \mathbf{r} \times \mathbf{F}
\]
Given \( \mathbf{r} = \hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{F} = 2\hat{i} + \hat{j} + 2\hat{k} \), compute the cross product:
\[
\mathbf{\tau} = (\hat{i} + \hat{j} + \hat{k}) \times (2\hat{i} + \hat{j} + 2\hat{k})
\]
\[
\mathbf{\tau} = \hat{i} \times 2\hat{i} + \hat{i} \times \hat{j} + \hat{i} \times 2\hat{k} + \hat{j} \times 2\hat{i} + \hat{j} \times \hat{j} + \hat{j} \times 2\hat{k} + \hat{k} \times 2\hat{i} + \hat{k} \times \hat{j} + \hat{k} \times 2\hat{k}
\]
Using the properties of the cross product:
\[
\mathbf{\tau} = \hat{i} + \hat{k}
\]
Thus, the answer is \( \boxed{\hat{i} + \hat{k}} \).